Randomer Forest (RerF) is a generalization of the Random Forest (RF) algorithm. RF partitions the input (feature) space via a series of recursive binary hyperplanes. Hyperplanes are constrained to be axis-aligned. In other words, each partition is a test of the form Xi > t, where t is a threshold and Xi is one of p inputs (features) {X1, …, Xp}. The best axis-aligned split is found by sampling a random subset of the p inputs and choosing the one that best partitions the observed data according to some specified split criterion. RerF relaxes the constraint that the splitting hyperplanes must be axis-aligned. That is, each partition in RerF is a test of the form w1X1 + … + wpXp > t. The orientations of hyperplanes are sampled randomly via a user-specified distribution on the coefficients wi, although an empirically validated default distribution is provided. Currently only classification is supported. Regression and unsupervised learning will be supported in the future.

See more